
Lecture 8: Cross Sections and Decay Rates

Sept 20, 2016

Formalism follows the discussion in Halzen and Martin



Overview

• Problems in particle physics fall into 3 categories

1. Descriptions of bound states
2. Decays
3. Scattering

• All have QM analogs

• But need to extend to include relativity (Lorentz invariant
form)

• Today:
I Review definitions and terminology
I Show some simple examples



Relativity Review

• xµ is a 4-vector
(0=time, 1-3=space)

• Lorentz boost long z-axis:

Λ =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


xµ′ = Λµνx

ν

repeated indices imply sum.

• Metric gµν

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



• Units: ~ = c = 1

• gµνxµxν is Lorentz invariant for
any xµ, xν

• Derivatives: ∂
∂xµ ≡ ∂µ

I ∂µ = (∂/∂t, ~∇),
I ∂µ = (∂/∂t,−~∇)

Thus pµ ⇒ i∂µ

• D’Alembertian �2 ≡ ∂µ∂µ

• Dot product

a · b = aµb
µ = a0b0 − ~a ·~b



The Klein-Gordon Equation (QED without spin)

• Relativistic energy-momentum conservation

E2 = p2 +m2

becomes in operator form for a wave function φ

−∂
2φ

∂t2
+∇2φ = m2φ

• Multiply by φ∗ on the right and then subtract complex conjugate equation

0 =
∂

∂t

[
i

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)]
+∇ · [−i (φ∗∇φ− φ∇φ∗)]

=
∂ρ

∂t
+∇ · j

The continuity equation (for probability)

• Using free particle solutions φ = Neip·x−iEt we identify

ρ ≡ 2E|N |2

~j ≡ 2p|N |2

jµ ≡ (ρ,~j)



Klein-Gordon equation: Negative Energy Solutions

• Since E = ±
√
p2 +m2, negative energy solutions exist

I ρ ≡ 2E|N |2 → negative probability density ρ

• Resolve this problem by multiplying by charge q

• Now jµ is a four-vector current
I The negative energy states are redefined as states of opposite

electric charge

Introduction of relativity requires introduction of anti-particle
states!



Some Comments on Wave Function Normalization

• From page 3, for plane wave states:

ρ = 2E|N |2∫
ρdV = 2E|N |2V

• Now boost long x-axis:

d3x → 1

γ
d3

E → γE

• If we define wave function normalization |N |2 ≡ 1/V then # of particles
(or total charge) is 2E independent of frame:∫

ρdV = 2E

This is the standard normalization



Dirac Equation: Adding Spin

(iγµ∂µ −m)ψ = 0

where

γµ = (β, β~α)

β =

(
I 0
0 −I

)
~α =

(
0 ~σ
~σ 0

)

• 4-component spinors (not a 4-vector!)

• Four free particle solutions

I Two particle states (helicity)
I Reinterpret negative energy states as two antiparticle states

• jµ = −eψγµψ: conserved charge and current



Perturbation Theory (I) Non-relativistic reminder

• Potential V(x, t) limited to finite spatial extent

• Assume V(x, t) small so PT works

• φn are solns to H0φn = Enφn

• For H = H0 + V(x, t):

(H0 + V(x, t))ψ = −i
∂ψ

∂t
,

ψ =
∑
n

an(t)φn(x)e−iEnt

therefore

i
∑
n

dan(t)

dt
φn(x)e−iEnt =

∑
n

V(x, t)anφn(x)e−iEnt

• Multiply by φ∗ and integrate:

i
daf

dt
e−iEnt = −i

∑
n

∫
V(x, t)an(t)φ∗fφne

−iEntd3x

daf

dt
= −i

∑
n

∫
an(t)V(x, t)φ∗fφne

−i(En−Ef )td3x



Perturbation Theory (II)

• Integrate over time from −T/2 to T/2

• At time t = −T/2 in state i:

ai(−T/2) = 1,

af (−T/2) = 0, for n 6= i

We find:

daf

dt
= −i

∫
ai(t)V(x, t)φ∗fφne

i(Ef−En)td3x

= −i
∫
φ∗fV(x, t)φne

i(Ef−En)td3x

Tfi ≡ af (T/2) = −i
∫ T/2

−T/2

∫
φ∗fV(x, t)φne

i(Ef−En)td3xdt′

• Or in covarient form

af = −i
∫
φ∗f (x)V(x)φi(x)d4x

Same expression holds for relativisitic QM



Perturbation Theory (III)

• If V has no time dependence

Tfi = −iVfi
∫ ∞
−∞

ei(Ef−Ei)tdt

= −2πiVfiδ(Ef − Ei)

Conservation of energy

• Transition rate

wfi = lim
T→∞

|Tfi|2

T

= lim
T→∞

2π
|Vfi|2

T
δ(Ef − Ei)

∫ T

−T

ei(Ef−Ei)tdt

= lim
T→∞

2π
|Vfi|2

T
δ(Ef − Ei)

∫ T

−T

dt

= 2π|Vfi|2δ(Ef − Ei)

• Must integrate over all possible final states for a given initial state

I Introduce density of states D(Ef )



Fermi Golden Rule

• The non-relativistic result holds for relativistic case as well

wfi = 2π|Vfi|2D(Ei)

where wfi is the transition rate, Vfi is the “matrix element” and D(Ei)
is the density of states factor, also called the phase space factor

• To lowest order

Vfi =

∫
d3 xφ∗f (x)V(x)φi(x)

• To next order

Vfi → Vfi +
∑
b 6=i

Vfn
1

Ei − En
Vni

and so forth for higher orders

• Relativistic phase space factor (before including any spin factors):

No of final states/particle =
V d3p

(2π)32E

The volume V always cancels out when we properly normalize the single
particle wave functions N = 1/

√
V



More comments on next order in Perturbation Theory?

Tfi = T lowestfi −
∑
n 6=i

VfnVni

∫ ∞
−∞

dtei(Ef−En)t

∫ t

−∞
ei(En−Ei)t

using

∫
dt′ei(En−Ei−iε) =

iei(En−Ei−iε)t

Ei − En − iε

Tfi = T lowestfi − 2πi
∑
n 6=i

VfnVni
Ei − En − iε

δ(Ef − Ei)

• Term in denominator is called the “‘propagator factor”

• Intermediate states are virtual and don’t have to conserve energy and
momentum

• Overall δ-fn imposed energy conservation on result



The physical interpretation

Lowest order

Next-to-Lowest 
order


i


f


i


f



n



Back to Fermi’s Golden Rule

wfi = 2π|Vfi|2D(E)

• Can divide transition rate into 2 partes:

I Dynamics: in |Vfi|
I Kinematics: in D(E)

• Have normalized wave function so
∫
ρdV = 2E

I But this is not Lorentz invariant

• Compensate by putting appropriate factor (1/2E) into D(E)

• From Stat Mech:

D(E) =
1

h3

∫
d3xd3p =

V

(2π~)3

∫
d3p

• To make this Lorentz invariant

N → V

(2π~)32E

∫
d3p

and now set ~ = 1



Calculating Cross Sections

• In all calculations arbitrary volume V cancels

D(E) =
∏

final state particles

d3p

(2π)32Ef

• |Tif |2 includes δ-function to conserve energy-momentum

• Will concentrate on two special cases:

1. Decay A→ B + C
2. Scattering A+B → C +D



Decays

• Decays

dΓ =
1

2EA
|Tif |2

d3p1

(2π)32E1
. . .

d3pn
(2π)32En

(2π)4δ4(pA− p1 − p2 . . . pn)

• For A→ B + C in rest frame:

dΓ =
pf

32π2m2
A

∫
|Tfi|2dΩ

where pf is momentum of one of the final state particles



Estimating Two-Body Decay Rates:

• Hadronic: eg ρ decay

Dimensionally, Tfi is a mass or energy. Assume 1 GeV. Now
estimate the width of ρ(770)→ ππ. pcm ≈ 360 MeV.

Γ =
4π

32π2

360 · 10002

7702
MeV = 24 MeV

True: 146 MeV. This is very good agreement!

• π → µν

This is a weak decay, so it has the Fermi constant in the
amplitude: GF ≈ 10−5GeV−2. So dimensionally,

Γ ∝ G2
F p

5

If we guess that p ≈ mπ we get

Γ = (10−5)2(0.1)5 GeV = 10−15GeV



π Decay Continued: Conversion Factors

Two convenient conversions, with ~ = c = 1 are

1 = 197 MeV fermi; 1 = 6.6× 10−25GeV s

This would give
Γ = 0.15× 1010s−1

or a lifetime of 6× 10−10s, whereas the real value is 2.5× 10−8.
This isn’t terrible. We’ve missed some important factors, but the
answer is indicative.

The same crude estimate can work for beta decay. Again, the
decay rate needs to be very roughly

Γ = G2
F p

5



Neutron Decay

Let’s try this for neutron decay. The energy release is
mn −mp −me = 0.78 MeV. Let’s take p = 0.3 MeV. Then

Γ = 10−10 × 10−15 × 3× 10−3 GeV = 0.5× 10−3s−1

that is, a lifetime of 2000 s, which is a fortuitously good estimate:
τn = 886 s.

Notice that the actual mass of the neutron doesn’t enter, only the
available energy. If the neutron were very much more massive, but
the mass differences were unchanged, the lifetime would be nearly
the same. That’s why we didn’t use the neutron mass in place of
some power of p.



Scattering Cross Section (I)

• Want to measure cross section σ ≡ σA+B→C+D

• dσ/dΩ defined as rate of scattering per beam particle and
target particle per unit solid angle per sec:

rate = Φ
dσ

dΩ

where Φ is flux in # beam particles/area/sec

• Unit of σ: area
1 barn = 10−28 m2 very big

mb, nb, pb, fb are typical units



Scattering Cross Section (II)

wfi = (2π)4δ4(pC + pD − pA − pB)|Tfi|2

Cross Section =
wfi

initial flux
(number of final states)

• Number of scatters:

ns = (nbvb)Ntσ

where vb is relative velocity of beam and target, nb is the
beam particle density (#/m3) and Nt = ntAB∆L is the
number of target particles within the beam area.



Cross Sections and Lorentz Invariants

• Cross sections are easy to estimate at high energies, where we can
ignore masses of scattered particles

• For p1 + p2 → p3 + p3 the Mandelstam variables are

s = (p1 + p2)
2

= (p3 + p4)
2

t = (p3 − p1)
2

= (p4 − p2)
2

u = (p3 − p2)
2

= (p4 + p1)
2

• In all cases s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4



s,t and u channel exchange

• We have seen that interactions occur via exchange of vector
bosons

• This exchange can be an annihilation (s) can just be
absorbtion and emission

• Describe in terms of the Mandelstam variables



e+e− → µ+µ−

• Ignoring masses and factors like i, a propagator in the s channel
give a factor 1/s.

• Similarly, a propagator in the t channel gives a factor 1/t. So for
e+e− → µ−µ−

Tfi ∝ α/s

• Now σ ∝ |M|2, so since there are no other dimensionful variables

σ ≈ α2

s

• The real answer is

σ =
4πα2

3s
=

86.8 nb

s(GeV2)

• Since a barn is 10−24cm2, 1 nb=10−33 cm2. Luminosities of e+e−

machines at s = 100GeV2 are typically of order 1033s−1cm−2,
giving about an event per second.



t-channel scattering

• What about µ+e− → µ+e− at some hypothetical storage ring.

• Here we can exchange a photon in the t channel. We need to consider
the differential cross section

dσ

dΩ
∝ α2s

t2

• We have argued on dimensional grounds that the numerator is s, but it
could also have been u2/s. In fact, the numerator depends in detail on
whether we are scattering spin-1/2 or spin-zero particles.

• Note that
t = −4p2

cm sin2 θ/2

where θ is the cm scattering angle. We see that that cross section
becomes infinite in the forward direction. Indeed, naively the total cross
section is infinite. We’ll talk more about this in the context of Rutherford
Scattering.



Scattering of Pointlike Particles
• Rutherford Scattering (spinless electron scattering from a static point charge) in

lab frame:
dσ

dΩ
=

α2

4E2 sin4( 1
2
θ)

where E is energy of incident electron, θ is scattering angle in the lab frame
• Mott Scattering: Taking into account statistics of identical spinless particles

dσ

dΩ
=

α2 cos2( 1
2
θ)

4E2 sin4( 1
2
θ)

• Elastic Scattering of spin- 1
2

electron from pointlike spin- 1
2

particle of mass M :
I Scattering of electron from static charge changes angle but not energy
I For target of finite mass M , final electron energy is

E′ =
E

1 + 2E
M

sin2( 1
2
θ)

and the four-momentum transfer is

q2 = −4EE′ sin2(
1

2
θ)

• The elastic scattering cross section is:

dσ

dΩ
=

α2 cos2( 1
2
θ)

4E2 sin4( 1
2
θ)

E′

E

[
1−

q2

2M2
tan2(

1

2
θ)

]



What Happens if the Target Particles Have Finite Size?

• Charge distribution ρ(r):
∫
ρ(r)d3r = 1

• Xcattering amplitude modified by a “Form Factor”

F (q2) =

∫
d3rei~q·~rρ(r)

So that the cross section is modified by a factor of |F (q2)|2

• Note: As q2 → 0, F (q2)→ 1

• We therefore can Taylor expand

F (q2) =

∫
d3r

(
1 + i~q · ~r − 1

2
(~q · ~r)2 + ...

)
ρ(r)



Form Factors

• The first ~q · ~r term vanishes when we integrate

F (q2) = 1− 1

2

∫
r2drd cos θdφρ(r)(qr)2 cos2 θ

=
2π

2

∫
drd cos θq2r4 cos2 θ

= 1− < r2 >

4
q2

∫
cos2 θd cos θ

= 1− < r2 >

4
q2

[
cos3 θ

3

]1

−1

%

= 1− < r2 >

6
q2

This F is called the “form factor”

• Thus, if we plot dσ
dΩ
/ dσ
dΩ pointlike

vs tan2 1
2
θ or vs q2 we can measure the

size of the proton

< r2 >
1
2 = 0.74± 0.24× 1013 cm ∼ 0.7 fm

(McAllister and Hofstadter, 1956)
See the next page for relevant plots



Hoffstader and McAllister’s experimental setup and results


